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SUMMARY

This paper describes the �nite di�erence numerical procedure for solving velocity–vorticity form of
the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic
using the false-transient technique and are solved along with the vorticity transport equations. The
parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI)
procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence-
free velocity �eld. The vorticity transport equations in conservative form are solved using the second-
order accurate Adams–Bashforth central di�erence scheme in order to assure divergence-free vorticity
�eld in three dimensions. The velocity and vorticity Cartesian components are discretized using a central
di�erence scheme on a staggered grid for accuracy reasons. The application of the ADI procedure
for the parabolic velocity Poisson equations along with the continuity equation results in diagonally
dominant tri-diagonal matrix equations. Thus the explicit method for the vorticity equations and the
tri-diagonal matrix algorithm for the Poisson equations combine to give a simpli�ed numerical scheme
for solving three-dimensional problems, which otherwise requires enormous computational e�ort. For
three-dimensional-driven cavity �ow predictions, the present method is found to be e�cient and accurate
for the Reynolds number range 1006Re62000. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical methods that are used to simulate incompressible viscous �ows can be classi�ed
into three major categories, namely primitive variable (velocity–pressure) [1–5] formulation,
stream function vector [6, 7] or vorticity-vector-potential [8] formulation and velocity–vorticity
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[9–16] formulation. The above formulations have been thoroughly investigated by various
researchers for 2D and 3D �ow problems using di�erent numerical methods. Goda [17] sim-
ulated two- and three-dimensional cavity �ows using the �nite di�erence method. The major
notion of his algorithm is to deal with only one-dimensional forms for both velocity and pres-
sure calculations in spite of the three-dimensional equations. Elshabka and Chung [6] used the
�nite element method to solve the fourth-order vector partial di�erential equations for the solu-
tion of three-dimensional stream function vector components. Weinan and Liu [8] adopted an
e�cient and accurate �nite di�erence method to calculate three-dimensional unsteady viscous
incompressible �ows in terms of the vorticity-vector-potential formulation on non-staggered
grids. In the past couple of decades, the velocity–vorticity formulation has been investigated
by many researchers using various numerical schemes such as the �nite di�erence method
[18, 19], the �nite element method [9, 20] and the boundary element method (BEM) [10, 11].
The velocity–vorticity form of Navier–Stokes equations pioneered by Fasel [21] has pro-

vided an e�ective formulation for the solution of two-dimensional computational �uid
dynamics (CFD) problems. Orlandi [22] established a numerical scheme for �ow over a
two-dimensional backward facing step using a block alternating direction implicit (ADI)
method. Liu [23] and Napolitano and Pascazio [24] among others, used the �nite di�erence
method with a staggered grid to study three-dimensional-driven cavity �ow problems. Two-
dimensional velocity–vorticity formulation using the �nite element method was �rst reported
by Guevremont et al. [25]. They used quadratic �nite elements for the velocity compo-
nents and linear �nite elements for the vorticity components. They also reported results for
three-dimensional-driven cavity �ow for Re=100 and 400. Recently Wong and Baker [9]
developed a parallel solution algorithm for the solution of three-dimensional incompressible
Navier–Stokes equations in velocity–vorticity form using the �nite element method. They used
Taylor’s series expansion scheme to obtain second-order accurate vorticity boundary conditions
at the wall boundary. Young et al. [10] used the Eulerian–Lagrangian BEM (ELBEM) for
the solution of two-dimensional incompressible viscous �ow problems using velocity–vorticity
formulation. The above method is obtained by the combination of the Eulerian–Lagrangian
method and the BEM. The Poisson-type velocity equations are solved using the general bound-
ary integral method with domain integration for the source terms and the vorticity boundary
conditions are exactly determined. The vorticity transport equation is solved using the ELBEM
on a transformed characteristic domain. Young et al. [11] also provided a combined boundary
element and �nite element method for the numerical solution of three-dimensional incompress-
ible viscous �ow using velocity–vorticity formulation. The use of �nite di�erence or �nite
element method for three-dimensional �ow problems demands large computational e�ort in
time and in computer memory especially for solving problems of high Reynolds number �ows.
Continuous research is going on in the �eld of computational �uid dynamics to develop sim-
pli�ed numerical procedures for the solution of three-dimensional �ow problems, so that even
a personal computer could be used for dealing with high Reynolds number �ow. The present
work concentrates to contribute in that direction.
The numerical scheme followed to solve the three-dimensional velocity–vorticity equations

using the �nite di�erence technique can be described by the following numerical procedures:

(1) The velocity Poisson equations obtained as a result of taking curl of the vorticity
de�nition along with the continuity equation are made parabolic using the false-transient
technique [18, 24, 26, 27] and hence they are accurately solved only at steady state.
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(2) The velocity Poisson equations are integrated in the time domain using a scalar ADI
procedure, which reduces the equations to a diagonally dominant tri-diagonal matrix.
Hence a simple tri-diagonal matrix algorithm (TDMA) can be used to solve the equa-
tions for velocities.

(3) Procedure (2) is used to obtain velocities u and v in the x and y directions respec-
tively. The velocity w in the z direction is obtained from the di�erentiated form of the
continuity equation, thus assuring a divergence-free velocity �eld.

(4) The Adams–Bashforth method, which is explicit and second-order accurate in time, is
used to discretize the vorticity transport equations in time. The conservative form of the
vorticity transport equations are used in order to satisfy the divergence-free constraint
for the vorticity �eld in three dimensions.

(5) The velocity and the vorticity variables in the Cartesian co-ordinates are discretized in
space using a second-order accurate central di�erence scheme on an MAC staggered
grid. The use of a staggered grid also ensures the accurate predictions of the �eld
variables.

(6) The use of the TDMA algorithm for the velocity Poisson equations and an explicit
time marching scheme for the vorticity transport equations have enabled us to use the
Gauss elimination technique for the solution of the �eld variables.

(7) The above-simpli�ed numerical solution procedure for the coupled governing equations
has allowed us to employ a uniform mesh of size 101× 101× 101 for obtaining the
�ow �eld for Re=2000 using a Pentium-IV personal computer.

(8) As far as the vorticity boundary conditions at the wall are concerned, a second-order ac-
curate central di�erence scheme is adopted to calculate the vorticity from its de�nition.

The contents of the paper are organized as follows: Section 2 presents the vorticity transport
equations and the velocity Poisson equations. Section 3 gives the details about the �nite
di�erence numerical procedure for the solution of the governing equations in velocity–vorticity
form. The numerical results for a lid-driven cubical cavity �ow for Re=100, 400, 1000 and
2000 are discussed in Section 4. The accuracy of the results predicted by the present numerical
scheme are veri�ed and compared with the results of other numerical schemes. Section 5
contains our main conclusions.

2. GOVERNING EQUATIONS

The partial di�erential equations governing the viscous, laminar �ow of an incompressible
�uid are given by the Navier–Stokes equations. The corresponding non-dimensional form of
the governing equations for conservation of mass and momentum can be expressed in vector
form as [28]:
Continuity equation

∇ · u=0 (1)

Momentum equation

@u
@t
+ u · ∇u= − ∇p+ 1

Re
∇2u (2)
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where u is the velocity vector of the �ow �eld, p is the pressure, Re= uL=� is the Reynolds
number and t is the time. Equations (1) and (2) represent the Navier–Stokes equations in the
primitive variable (pressure–velocity) form.
By using the curl operator to Equation (2), one gets the following dimensionless form of

the vorticity transport equation:

@�
@t
+ u · ∇�=� · ∇u+ 1

Re
∇2� (3)

where the vorticity vector � is de�ned as

�=∇ × u (4)

By taking the curl of Equation (4) and using the continuity equation (1), the following velocity
Poisson equation can be obtained:

∇2u= − ∇ ×� (5)

Equations (3) and (5) are the velocity–vorticity form of the Navier–Stokes equations, with
three equations for the velocity vector, u=(u; v; w) and three equations for the vorticity vector,
�=(�; �; &) in the Cartesian co-ordinates.
We seek a solution for the �eld variables in the domain �, which satis�es the initial

conditions,

u= u0; v= v0; w=w0 at t=0 (6)

and non-slip boundary conditions of velocity on the solid boundary � of �. The boundary
condition for Equation (3) is obtained by using the vorticity de�nition of Equation (4) on the
boundary.

3. FINITE DIFFERENCE NUMERICAL SCHEME

The solenoidality constraint on the vorticity �eld in three-dimension requires a solution of the
system of governing equations represented by Equations (3) and (5) with boundary conditions
given by Equations (4) and (6). However, the computation of the six �eld variables in a 3D
domain using a direct solver is an arduous challenge. The solution of the time-dependent
vorticity transport equations (3) and the elliptic Poisson equations (5) necessarily demands
the use of a direct solver. The solution procedure can be simpli�ed by making the velocity
Poisson equations (5) also parabolic. This can be achieved by making use of the false-transient
method proposed by Mallinson and Davis [26]. With this modi�cation, the parabolic form of
the velocity Poisson equations (5) can be expressed as

�
@u
@t

− ∇2u − ∇ ×�=0 (7)

where � is a relaxation parameter. It is obvious that the steady state solutions for the �ow
�eld are obtained when the time derivatives in Equations (3) and (7) approach zero. A simple
ADI algorithm can be adopted to discretize the time derivatives in Equation (7). Considering
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the �rst component of the kinematic relations (7), it can be rewritten as a tri-diagonal system
of equations of the form

aiui−1;j;k + biui;j;k + ciui+1;j;k =di (8)

where

ai =− �t
��x2

bi =1+
2�t
��x2

ci =− �t
��x2

di = R(ui;j;k)

and R(ui;j;k) is the residual of the discretized form of the parabolic equation (7) [12]. This
procedure yields Nj ×Nk linear system of equations of the type given by Equation (8). Initially
the velocities u and v are calculated by adopting the ADI procedure and then the velocity w
is calculated from the continuity equation as given below:

@2w
@z2

= − @
@z

(
@u
@x
+
@v
@y

)
(9)

Since the velocities u and v are already known the resulting set of equations from
Equation (9) can be solved using the TDMA. The main advantage of the present numer-
ical solution procedure is that it assures a divergence-free solution for the velocity �eld, in
addition to achieving a higher numerical accuracy and a signi�cant reduction in the compu-
tational time.
The vorticity transport equations (3) are discretized in time using the explicit, second-

order accurate Adams–Bashforth scheme. The discretized form of the vorticity transport
equations (3) for the three vorticity components in the Cartesian co-ordinates can be written as

�n+1 − �n
�t

+ 1:5fn1 − 0:5fn−11 = 0 (10)

�n+1 − �n
�t

+ 1:5fn2 − 0:5fn−12 = 0 (11)

&n+1 − &n
�t

+ 1:5fn3 − 0:5fn−13 = 0 (12)

where

f1 =
�y
�y

(v�) +
�z
�z
(w�)− �y

�y
(�u)− �z

�z
(&u)− 1

Re

(
�2

�x2
+

�2

�y2
+
�2

�z2

)
�

f2 =
�x
�x
(u�) +

�z
�z
(w�)− �x

�x
(�v)− �z

�z
(&v)− 1

Re

(
�2

�x2
+

�2

�y2
+
�2

�z2

)
�
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Figure 1. Three-dimensional staggered grid.

f3 =
�x
�x
(u&) +

�y
�y

(v&)− �x
�x
(�w)− �y

�y
(�w)− 1

Re

(
�2

�x2
+

�2

�y2
+
�2

�z2

)
&

and �x, �y, �z are the �rst-order central di�erence operators, �2x , �
2
y, �

2
z are the second-order

central di�erence operators. In order to ensure accuracy in the prediction of velocities and
vorticities, a MAC staggered grid system as displayed in Figure 1 is used in the present nu-
merical scheme. The �nal form of the discretized equations (8) and (10)–(12) for velocities
and vorticities, respectively, are second-order accurate in time and space. The numerical stabil-
ity conditions are satis�ed by using the conservative form of the vorticity transport equations
in the discretized form as expressed by Equations (10)–(12) and using a time step calculated
based on the following numerical stability condition:

∣∣∣∣umax�t�x

∣∣∣∣61;
∣∣∣∣vmax�t�y

∣∣∣∣61;
∣∣∣∣wmax�t�z

∣∣∣∣6 1 (13)

�t
Re

(
1
�x2

+
1
�y2

+
1
�z2

)
6
1
2

(14)

4. MODEL APPLICATION

Traditionally, the velocity and pressure are treated as the primitive variables while analyzing
a viscous incompressible �ow problem. That means the Navier–Stokes equations (2) and the

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1469–1487



NUMERICAL SOLUTION OF 3-D VELOCITY–VORTICITY NAVIER–STOKES EQUATIONS 1475

-1.00 -0.50 0.00 0.50 1.00

-1.00

-0.50

0.00

0.50

1.00

Present (Re=100)

Jiang et al. (1994)

Wong and Baker (2002)

Shu et al. (2003)

Present (Re=400)

Jiang et al. (1994)

Wong and Baker (2002)

Shu et al. (2003)

u

w

Figure 2. Velocity pro�les for Re=100 and 400 on vertical and horizontal centrelines.

continuity equation (1) should be taken into consideration simultaneously. However, while
solving these two sets of equations, pressure and velocity are involved during the iterating
process. However it is rather di�cult to implicitly deal with the continuity equation because
there is no pressure term in Equation (1). On the other hand, the velocity–vorticity formulation
has no such problem because it is free from the pressure term. In the present model, the
velocity Poisson equations are initially solved to get the velocity distribution. The vorticity
boundary conditions are calculated using the vorticity de�nition for an initial guess of the
wall vorticity boundary conditions.
The lid-driven cavity �ow problem is always considered as a bench mark problem for testing

any new numerical scheme. The present �nite di�erence numerical procedure is validated by
applying it to a cubical lid-driven cavity problem, in which the top wall is assumed to move
parallel to the x-axis (refer Figure 1) with constant velocity of unity (dimensionless). The
�uid in the cavity is assumed to be viscous and incompressible. In the present work, results
were obtained for the lid-driven cavity �ow for Re=100 using a 51× 51× 51 uniform mesh
and for Re=400, 1000 and 2000 using a uniform mesh of size 101× 101× 101.
In the three-dimensional Navier–Stokes equations system, the intensity of the non-linearity,

the di�usion and the convective e�ects are related with the magnitude of the Reynolds number.
Therefore, �ne meshes have to be used while solving high Reynolds number �ows. Accurate
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Figure 3. Velocity pro�les for Re=1000 on vertical and horizontal centrelines.

predictions for di�erent Reynolds number �ows can be obtained only by using an appropriate
mesh. The results obtained are also strongly associated with the way in which the mesh size
is adopted. We require to use a high-density mesh in the regions of steep gradients of the
�eld variables, in order to capture the development of the boundary layer with increase in the
Reynolds number. At low values of Reynolds number the di�usion plays a signi�cant role
in the formation of the �ow �eld, however when the Reynolds number is increased to 100,
the convection e�ects modify the di�usion process. In the present work the numerical results
predicted for Re=100, 400, 1000 and 2000 are discussed. All the computations have been
carried out on a 1:5 GHz Pentium-IV personal computer with 256 Mb RAM.
The results obtained by the present numerical method for a 3D lid-driven cavity �ow are

presented in the form of velocity vectors and vorticity contours at the mid-planes along the
principal axes of the cavity in order to understand the �ow patterns at di�erent Reynolds
numbers. For the purpose of validation, the u velocity pro�le along the vertical central line
(u–z plot) and the w velocity pro�le along the horizontal central line (x–w plot) of the cavity
are compared with available results. Figures 2 and 3 show the u–z comparisons with the
results of Jiang et al. [29], Wong and Baker [9] and Shu et al. [30] and x–w comparisons
with the results of Shu et al. [30] for Re=100, 400 and 1000. The results predicted by the
present scheme are in close agreement with the results of the above authors for Re=100,
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Table I. Comparison of maximum negative u velocity.

Present Reference [29] Reference [9]

Re z u z u z u

100 0.46 −0.2163 0.48 −0.212 0.4592 −0.2154
400 0.26 −0.2334 0.26 −0.2341 0.2509 −0.2349
1000 0.12 −0.2671 0.12 −0.2754 0.125 −0.2792

Table II. u velocity along the vertical centreline of the 3D-driven cavity.

z location Re=100 Re=400 Re=1000 Re=2000

0 0 0 0 0
0.04 −0.02928 −0.0645 −0.15736 −0.16252
0.08 −0.05430 −0.11576 −0.23687 −0.2429
0.1 −0.06578 −0.13817 −0.25743 −0.26394
0.12 −0.07675 −0.15886 −0.26714 −0.26501
0.14 −0.08740 −0.17779 −0.26615 −0.24457
0.16 −0.09780 −0.19471 −0.25535 −0.21002
0.2 −0.11815 −0.22071 −0.21285 −0.13603
0.22 −0.12816 −0.22882 −0.18648 −0.10671
0.24 −0.13809 −0.23313 −0.15988 −0.08372
0.26 −0.14789 −0.23343 −0.13468 −0.06607
0.3 −0.16687 −0.22212 −0.09161 −0.04199
0.32 −0.17587 −0.21108 −0.07413 −0.03363
0.36 −0.19227 −0.1809 −0.0463 −0.02111
0.4 −0.20548 −0.1443 −0.02574 −0.01183
0.42 −0.21047 −0.12518 −0.01738 −0.00786
0.44 −0.21414 −0.10619 −0.00997 −0.00413
0.46 −0.21632 −0.08772 −0.00328 −0.00055
0.5 −0.21561 −0.05334 0.00856 0.0065
0.52 −0.21247 −0.03767 0.01399 0.01011
0.56 −0.20017 −0.00952 0.02434 0.01777
0.58 −0.19092 0.00306 0.0294 0.02191
0.64 −0.15073 0.03599 0.04476 0.036
0.66 −0.13324 0.04573 0.05008 0.04133
0.68 −0.11369 0.05505 0.05558 0.04697
0.72 −0.06807 0.07288 0.06723 0.05918
0.76 −0.01206 0.09045 0.08011 0.07255
0.78 0.02111 0.09954 0.08716 0.07967
0.8 0.05888 0.10919 0.0947 0.08713
0.84 0.15361 0.13287 0.11205 0.10339
0.88 0.28593 0.17537 0.1349 0.12264
0.9 0.37125 0.21562 0.15264 0.13468
0.92 0.47149 0.28139 0.18367 0.15167
0.94 0.58704 0.3865 0.24776 0.18533
0.96 0.71653 0.54381 0.38323 0.27562
0.98 0.85624 0.75538 0.63626 0.52063
1 1 1 1 1
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Table III. w velocity along the horizontal centreline of the 3D-driven cavity.

x location Re=100 Re=400 Re=1000 Re=2000

0 0 0 0 0
0.04 0.06358 0.11371 0.16087 0.1792
0.06 0.08845 0.14992 0.20336 0.21512
0.08 0.10899 0.17454 0.2265 0.2297
0.1 0.12547 0.18978 0.23616 0.2293
0.12 0.13825 0.19794 0.23647 0.21742
0.14 0.14767 0.20103 0.23013 0.19818
0.18 0.15784 0.19788 0.2057 0.15434
0.2 0.15927 0.19351 0.19092 0.13496
0.24 0.15627 0.18176 0.16154 0.10471
0.26 0.15232 0.17493 0.14795 0.09328
0.3 0.14041 0.16006 0.12362 0.07556
0.32 0.13272 0.15216 0.11279 0.06852
0.38 0.10370 0.12677 0.08438 0.05162
0.42 0.07977 0.10826 0.06779 0.04242
0.48 0.03708 0.07738 0.04487 0.03007
0.52 0.00388 0.05411 0.03027 0.02216
0.54 −0.01419 0.04147 0.02305 0.01816
0.56 −0.03326 0.02803 0.01583 0.01405
0.6 −0.07418 −0.00185 0.00114 0.00528
0.62 −0.09585 −0.01872 −0.00644 0.00049
0.64 −0.11811 −0.03729 −0.01431 −0.00464
0.66 −0.14066 −0.05797 −0.02259 −0.01018
0.68 −0.16315 −0.08129 −0.0315 −0.0162
0.72 −0.20578 −0.1381 −0.05266 −0.02986
0.74 −0.22454 −0.1725 −0.06632 −0.03766
0.76 −0.24048 −0.2111 −0.0837 −0.04627
0.78 −0.25264 −0.2527 −0.10686 −0.056
0.82 −0.26169 −0.3346 −0.18149 −0.08235
0.84 −0.25687 −0.36537 −0.23736 −0.10387
0.86 −0.24502 −0.38096 −0.30346 −0.1384
0.88 −0.22595 −0.37533 −0.3694 −0.19475
0.9 −0.19991 −0.34516 −0.41506 −0.27727
0.92 −0.16756 −0.29166 −0.41534 −0.36774
0.94 −0.12997 −0.22098 −0.3548 −0.40986
0.96 −0.08851 −0.14255 −0.2435 −0.34083
0.98 −0.04468 −0.0663 −0.11416 −0.17465
1 0 0 0 0

400 and 1000. The comparison of the minimum u velocity with the results of Jiang et al.
[29] and Wong and Baker [9] for Re=100, 400 and 1000 as given in Table I shows the
present numerical scheme could predict the �ow results with acceptable numerical error. The
minimum u velocity calculated by Wong and Baker [9] is 0.2154 for Re=100, compared to
0.2163 computed by the present study, with an error of 0.42%. The values of u velocity along
the z direction and values of w velocity along the x direction for selected nodal points are
given in Tables II and III, respectively, for Re=100, 400, 1000 and 2000. The e�ciency of
the present numerical scheme can be well appreciated by noting that the present results are
obtained using entirely a di�erent numerical scheme compared to Jiang et al. [29] who used
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Figure 4. Velocity pro�les for Re=2000 on vertical and horizontal centrelines.

the least square �nite element method and Wong and Baker [9] who obtained results using
eight-node hexahedral �nite elements on a non-staggered grid. Having validated the code up
to Re=1000, results are obtained for Re=2000 using a uniform grid of size 101× 101× 101.
The u–z plot and x–w plot for Re=2000 are shown in Figure 4. The increase in the Reynolds
number value from 1000 to 2000 has resulted in further thinning of the boundary layer near
the moving wall as observed in Figure 4 by the sharp velocity gradient. Also it develops a
dip in the u–z velocity pro�le before reaching the minimum value.
The most important feature of 3D cavity �ows is the end wall e�ect, which is not observed

in the case of 2D cavity �ows. The end wall e�ect produces di�erent �ow patterns resulting
in the formation of eddies and vortices. This �ow structure could be well understood by the
velocity and vorticity contours projected on the mid-planes along the principal axes of the
cavity. The velocity vectors projected on y=0:5 plane for Re=100, 400, 1000 and 2000 are
shown in Figures 5(a), (b), (c) and (d), respectively. For Re=100, the axis of the primary
vortex starts at the right upper region of the cavity. The end wall e�ect causes the axis
of the primary vortex to move towards the centre of the cavity with increase in Reynolds
number as observed in the above �gures. The span wise �ow becomes more important at
high Reynolds number for 3D cavity �ows. The velocity vector plots on x=0:5 plane shown
in Figures 6(a)–(d) highlight the generation of secondary vortices at high Reynolds numbers.
Initially two vortices are observed at the symmetric centre plane and the vortices start moving
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Figure 5. Velocity distribution at y=0:5 plane. (a) Re=100;
(b) Re=400; (c) Re=1000; (d) Re=2000.

towards the bottom as well as the end of the sidewalls with increase in Reynolds number. At
Re=1000, two recirculation cells also start appearing at the top ends of the sidewalls. The
bottom vortices become strong at Re=2000 as observed in Figure 6(d). The modi�cations
of the �ow �elds at x=0:5 plane for di�erent Reynolds number is an important consequence
of the three-dimensional e�ect. The velocity vectors on z=0:5 plane, which is parallel to the
moving lid are shown in Figures 7(a)–(d) for Re=100–2000. As the top lid moves in the
positive x direction, the �uid is expected to take the opposite direction for the return �ow
as shown in Figure 7(a) for Re=100. With increase in Reynolds number, the smooth �ow
parallel to the x-axis is disturbed. Since the �ow is already �owing span wise in the x–y
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Figure 6. Velocity distribution at x=0:5 plane. (a) Re=100;
(b) Re=400; (c) Re=1000; (d) Re=2000.

plane, the e�ect of increase in Reynolds number is to make the �ow in the z direction as
well, thus making the �ow fully three-dimensional. This results in the generation of two more
symmetric vortices to the left of the original vortices. As the Reynolds number increases the
initial vortices start di�using at the centre of the cavity, with the secondary vortices start
moving continuously towards the end walls. At Re=2000, the secondary vortices also start
merging along with the original vortices formed at the centre of the cavity. The velocity
vectors projected on the centre planes of all the principal axes as illustrated in Figures 5–7,
are in good qualitative agreement with the results of Wong and Baker [9] for Re=100, 400
and 1000 and with the results of Jiang et al. [29], Nikfetrat and Hafez [31], Ho and Lin
[32] and Ku et al. [33] for Re=100 and 400. Similar comparisons of the velocity vectors on
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Figure 7. Velocity distribution at z=0:5 plane. (a) Re=100;
(b) Re=400; (c) Re=1000; (d) Re=2000.

y=0:5 with the two-dimensional cavity �ow results of Burggra� [34] and Ghia et al. [35]
for Re=100 and 400, indicates that the present model could predict the �ow patterns in a
3D cubic cavity for a wide range of Reynolds numbers.
For obtaining the solution for velocities the continuity equation is satis�ed as shown by

Equation (9). Also the conservative forms of the vorticity transport equations (10)–(12) are
solved to obtain the vorticity components. Hence the divergence-free solutions for the ve-
locities and the vorticities are ensured. Since we use the vorticity de�nition to compute the
boundary vorticity values, the solenoidal condition on the vorticity �eld is also satis�ed as
stated by Guj and Stella [12]. This fact can be veri�ed by plotting the vorticity values at dif-
ferent planes of the cavity. The y direction vorticity contours at y=0:5 plane for Re=100,
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Figure 8. Vorticity (�) contour at y=0:5 plane. (a) Re=100;
(b) Re=400; (c) Re=1000; (d) Re=2000.

400, 1000 and 2000 are shown in Figures 8(a), (b), (c) and (d), respectively. The symmetry
of the vorticity contours, which are observed in the case of Stokes �ow, is disturbed for
high Reynolds numbers as the inertial forces become dominating over the viscous forces. The
direction of distortion will be counter-clockwise since the top lid is moving from left to right.
Figure 8(a) clearly indicates these distortions for Re=100. As the Reynolds number increases,
the vorticity generated on the top wall and other boundary regions starts moving to other re-
gions due to increase in the inertial forces as observed in Figures 8(b)–(d). These vortices
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Figure 9. Vorticity (�) contour at x=0:5 plane. (a) Re=100;
(b) Re=400; (c) Re=1000; (d) Re=2000.

try to form a �ow pattern similar to solid rotation if they get su�cient strength. This type of
�ow pattern could not be captured up to Re=1000. When the Reynolds number increases to
2000, most of the vortices near the centre of the cavity have closed themselves, thus forming
a �ow pattern of solid rotation at the centre, as shown in Figure 8(d). In order to observe the
3D e�ect, the x direction vorticity contours at x=0:5 plane for di�erent Reynolds numbers are
shown in Figures 9(a)–(d). At moderate Reynolds numbers, the secondary vortices are not ob-
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Figure 10. Vorticity (�) contour at z=0:5 plane. (a) Re=100;
(b) Re=400; (c) Re=1000; (d) Re=2000.

served. As the Reynolds number increases, these secondary vortices start moving towards the
corners of the cavity due to the end wall e�ects. These trends are clearly depicted by the above
�gures with increase in Reynolds number. The approach of these secondary vortices to the
extreme corners of the cavity are very clearly observed for Re=2000 as shown in Figure 9(d).
The z direction vorticity contours at z=0:5 plane are shown in Figures 10(a)–(d).
Initially for Re=100, the vortex strength starts appearing only at the upper and bottom down-
stream regions of the x–y plane. As the Reynolds number increases, the �ow takes place in
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the z direction also, thus causing the generation of velocity gradients along the other sides of
the x–y plane. This results in the formation of vortices originally closer to the initial vortices
and these secondary vortices gain more strength and start moving towards the corners as the
Reynolds number increases. These �ow patterns can be clearly observed from the above �g-
ures. In general it is observed that the �ow pattern becomes more complex as the Reynolds
number increases above 1000.

5. CONCLUSIONS

A �nite di�erence numerical solution procedure for solving three-dimensional Navier–Stokes
equations in velocity–vorticity form is tested for a lid-driven cubical cavity �ow. The simpli-
�ed numerical procedure has enabled us the use of a very �ne mesh of size 101× 101× 101
for numerical predictions of cavity �ow up to Re=2000 on a Pentium-IV personal computer.
The numerical results obtained for Re=100, 400, 1000 for a typical cubic cavity �ow are in
good agreement with the results obtained by other numerical schemes. The use of a uniform
�ne mesh of size 101× 101× 101 could predict the complex �ow patterns when the Reynolds
number is increased to 2000. When parallel computation is the order of the day, the present
numerical scheme demonstrates that the �nite di�erence method could be used e�ciently for
solving high Reynolds number �ow problems in three dimensions using a personal computer.
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